In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery.
نویسندگان
چکیده
Electroporation (EP) is a physical method for the delivery of molecules into cells and tissues, including the skin. In this study, in order to control the degree of transdermal and topical drug delivery, EP at different amplitudes of electric pulses was evaluated. A new in vivo real-time monitoring system based on fluorescently labeled molecules was developed, for the quantification of transdermal and topical drug delivery. EP of the mouse skin was performed with new non-invasive multi-array electrodes, delivering different amplitudes of electric pulses ranging from 70 to 570 V, between the electrode pin pairs. Patches, soaked with 4 kDa fluorescein-isothiocyanate labeled dextran (FD), doxorubicin (DOX) or fentanyl (FEN), were applied to the skin before and after EP. The new monitoring system was developed based on the delivery of FD to and through the skin. FD relative quantity was determined with fluorescence microscopy imaging, in the treated region of the skin for topical delivery and in a segment of the mouse tail for transdermal delivery. The application of electric pulses for FD delivery resulted in enhanced transdermal delivery. Depending on the amplitude of electric pulses, it increased up to the amplitude of 360 V, and decreased at higher amplitudes (460 and 570 V). Topical delivery steadily enhanced with increasing the amplitude of the delivered electric pulses, being even higher than after tape stripping used as a positive control. The non-invasive monitoring of the delivery of DOX, a fluorescent chemotherapeutic drug, qualitatively and quantitatively confirmed the effects of EP at 360 and 570 V pulse amplitudes on topical and transdermal drug delivery. Delivery of FEN at 360 and 570 V pulse amplitudes verified the observed effects as obtained with FD and DOX, by the measured physiological responses of the mice as well as FEN plasma concentration. This study demonstrates that with the newly developed non-invasive multi-array electrodes and with the varying electric pulse amplitude, the amount of topical and transdermal drug delivery to the skin can be controlled. Furthermore, the newly developed monitoring system provides a tool for rapid real-time determination of both, transdermal and topical delivery, when the delivered molecule is fluorescent.
منابع مشابه
A Review on Current Status and Future Potential of Transdermal Patches as a Promising Drug Delivery System
Transdermal patches are now widely used in topical and transdermal drug delivery systems (TDDS). Up to now, TDDS has been used in several conditions, such as smoking cessation, analgesic effect, nausea, contraception, and hormone therapy. Basically, there are two types of transdermal patches: the reservoir-type patches and the matrix-type patches. First generation TDDS were designed for deliver...
متن کاملIn vitro and in vivo evaluation of a novel testosterone transdermal delivery system (TTDS) using palm oil base
Objective (s): Transdermal preparations for testosterone are becoming popular because of their unique advantages such as avoidance of first-pass effect, convenience, improved bioavailability, and reduction of systemic side effects. A novel testosterone transdermal delivery system (TDDS) was developed using a palm oil base called HAMINTM (a commercial product) and tested using in vitro and in vi...
متن کاملراهبردهای افزایش نفوذ در دارورسانی پوستی
Transdermal drug delivery (TDD) is a non-invasive, topical administration method for therapeutic agents. Transdermal delivery also has advantages including providing release for long periods of time, improving patient compliance, and generally being inexpensive. Despite these advantages, the use of TDD has been limited by innate barrier functions of the skin. Only small (<500 Da), lipophilic mo...
متن کاملPharmaceutical Nanoemulsions and Their Potential Topical and Transdermal Applications
Topical and transdermal drug delivery systems are noninvasive and can be self-administered with the minimization of side-effects, have received increased attention during the past few years. Nanoemulsions, emulsions sized between 20-200 nm with narrow distributions, offer several advantages for topical and transdermal delivery of pharmaceutical agents including controlled droplet size, th...
متن کاملMeloxicam transdermal delivery: effect of eutectic point on the rate and extent of skin permeation
Objective(s):Drug delivery through the skin can transfer therapeutic levels of drugs for pharmacological effects. Analgesics such as NSAIDs have gastrointestinal side effects and topical dosage forms of these drugs are mainly preferred, especially for local pains. Meloxicam is one of NSAIDs with no topical form in the market. In this research, we attempted to quantify the skin permeation of a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of controlled release : official journal of the Controlled Release Society
دوره 172 3 شماره
صفحات -
تاریخ انتشار 2013